10 research outputs found

    IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System

    Get PDF
    PURPOSE: To improve persistence of adoptively transferred T-cell receptor (TCR)-engineered T cells and durable clinical responses, we designed a clinical trial to transplant genetically-modified hematopoietic stem cells (HSCs) together with adoptive cell transfer of T cells both engineered to express an NY-ESO-1 TCR. Here, we report the preclinical studies performed to enable an investigational new drug (IND) application. EXPERIMENTAL DESIGN: HSCs transduced with a lentiviral vector expressing NY-ESO-1 TCR and the PET reporter/suicide gene HSV1-sr39TK and T cells transduced with a retroviral vector expressing NY-ESO-1 TCR were coadministered to myelodepleted HLA-A2/Kb mice within a formal Good Laboratory Practice (GLP)-compliant study to demonstrate safety, persistence, and HSC differentiation into all blood lineages. Non-GLP experiments included assessment of transgene immunogenicity and in vitro viral insertion safety studies. Furthermore, Good Manufacturing Practice (GMP)-compliant cell production qualification runs were performed to establish the manufacturing protocols for clinical use. RESULTS: TCR genetically modified and ex vivo-cultured HSCs differentiated into all blood subsets in vivo after HSC transplantation, and coadministration of TCR-transduced T cells did not result in increased toxicity. The expression of NY-ESO-1 TCR and sr39TK transgenes did not have a detrimental effect on gene-modified HSC's differentiation to all blood cell lineages. There was no evidence of genotoxicity induced by the lentiviral vector. GMP batches of clinical-grade transgenic cells produced during qualification runs had adequate stability and functionality. CONCLUSIONS: Coadministration of HSCs and T cells expressing an NY-ESO-1 TCR is safe in preclinical models. The results presented in this article led to the FDA approval of IND 17471

    Early Care and Transfer of Burn Patients

    No full text

    Overcoming Genetically Based Resistance Mechanisms to PD-1 Blockade

    No full text
    Mechanism-based strategies to overcome resistance to PD-1 blockade therapy are urgently needed. We developed genetic acquired resistant models of JAK1, JAK2, and B2M loss-of-function mutations by gene knockout in human and murine cell lines. Human melanoma cell lines with JAK1/2 knockout became insensitive to IFN-induced antitumor effects, while B2M knockout was no longer recognized by antigen-specific T cells and hence was resistant to cytotoxicity. All of these mutations led to resistance to anti¿PD-1 therapy in vivo. JAK1/2-knockout resistance could be overcome with the activation of innate and adaptive immunity by intratumoral Toll-like receptor 9 agonist administration together with anti¿PD-1, mediated by natural killer (NK) and CD8 T cells. B2M-knockout resistance could be overcome by NK-cell and CD4 T-cell activation using the CD122 preferential IL2 agonist bempegaldesleukin. Therefore, mechanistically designed combination therapies can overcome genetic resistance to PD-1 blockade therapy. Significance: The activation of IFN signaling through pattern recognition receptors and the stimulation of NK cells overcome genetic mechanisms of resistance to PD-1 blockade therapy mediated through deficient IFN receptor and antigen presentation pathways. These approaches are being tested in the clinic to improve the antitumor activity of PD-1 blockade therapy.This study was funded in part by the Parker Institute for Cancer Immunotherapy, NIH grants R35 CA197633 and P01 CA244118, the Ressler Family Fund, and support from Ken and Donna Schultz (all to A. Ribas). D.Y. Torrejon was supported by a Young Investigator Award from ASCO, a grant from the Spanish Society of Medical Oncology for Translational Research in Reference Centers, and the V Foundation-Gil Nickel Family Endowed Fellowship in Melanoma Research. It has been developed within the framework of a medical doctorate at the Autonomous University of Barcelona. G. Abril-Rodriguez was supported by the Isabel & Harvey Kibel Fellowship Award and the Alan Ghitis Fellowship Award for Melanoma Research. J. Tsoi and K.M. Campbell were supported by the NIH Ruth L. Kirschstein Institutional National Research Service Award #T32-CA009120 and the UCLA Tumor Immunology Training Grant (T32CA009120). G. Parisi was supported by the V Foundation-Gil Nickel Family Endowed Fellowship in Melanoma Research. J.M. Zaretsky was in the UCLA Medical Scientist Training Program supported by NIH training grant GM08042. S. Hu-Lieskovan was supported by a Conquer Cancer Foundation ASCO Career Development Award, a UCLA KL2 Translational Research Award, and a Melanoma Research Alliance Young Investigator Award. Flow and mass cytometry were performed in the UCLA Jonsson Comprehensive Cancer Center (JCCC) and Center for AIDS Research Flow Cytometry Core Facility that is supported by NIH awards P30 CA016042 and 5P30 AI028697, and by the JCCC, the UCLA AIDS Institute, and the David Geffen School of Medicine at UCLA. The purchase of the Helios mass cytometer that was used in this work was supported, in part, by funds provided by the James B. Pendleton Charitable Trust. We want to thank Dr. Cristiana Guiducci from Dynavax and Drs. Deborah Charych and Willem Overwijk from Nektar Therapeutics for helpful guidance in the performance of in vivo studies with SD-101 and bempegaldesleukin, respectively. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact

    Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors.

    No full text
    BRAF inhibitors are highly effective therapies for the treatment of BRAF(V600)-mutated melanoma, with the main toxicity being a variety of hyperproliferative skin conditions due to paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyperproliferative skin changes improve when a MEK inhibitor is co-administered, as it blocks paradoxical MAPK activation. Here we show how the BRAF inhibitor vemurafenib accelerates skin wound healing by inducing the proliferation and migration of human keratinocytes through extracellular signal-regulated kinase (ERK) phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing mice models accelerates cutaneous wound healing through paradoxical MAPK activation; addition of a mitogen-activated protein kinase kinase (MEK) inhibitor reverses the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor does not increase the incidence of cutaneous squamous cell carcinomas in mice. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds

    Genetic Mechanisms of Immune Evasion in Colorectal Cancer

    No full text
    To understand the genetic drivers of immune recognition and evasion in colorectal cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 classified as microsatellite instability–high (MSI-high). This set includes The Cancer Genome Atlas colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of colorectal cancer, had a high rate of significantly mutated genes in important immune-modulating pathways and in the antigen presentation machinery, including biallelic losses of B2M and HLA genes due to copy-number alterations and copy-neutral loss of heterozygosity. WNT/β-catenin signaling genes were significantly mutated in all colorectal cancer subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This largescale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that colorectal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion. SIGNIFICANCE: This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it should be possible to better monitor resistance in the 15% of cases that respond to immune blockade therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that currently do not
    corecore